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Abstract—In this paper, we study some parties - each has a
private data set - want to conduct the outlier detection on their
joint data set, but none of them want to disclose its private data to
the other parties. We propose a linear transformation technique
to design protocols of secure multivariate outlier detection in
both horizontally and vertically distributed data models. While
different from the most of previous techniques in a privacy
preserving fashion for distance-based outliers detection, our focus
is the technique in statistics for detecting outliers.

I. INTRODUCTION

Nowadays, data mining is being used in various appli-
cations to support people discovering useful knowledge in
large databases [1]. However, the process of mining data
can result in a violation of privacy. Furthermore, issues of
privacy preservation in data mining are receiving more and
more attention from the this community [2]. As a result, a
large number of studies has been produced on the topic of
privacy-preserving data mining (PPDM) [3]. These studies
deal with the problem of learning models from databases,
while protecting data privacy at the level of individual records
or the level of organizations.

Outlier detection is an important data mining technique
that has wide application in various areas such as network
intrusion detection, searching for terrorism, fraud discovery
in the mobile communication, etc. The problem is that there
are usually several parties participating in the mining process,
each has its private data set and want to cooperate to detect
outliers, but none of them wants to disclose its private data.
For example, two companies need to share their network log
data to build an intrusion detection system, some banks need to
share their customers data to find fraud cases, etc. Therefore,
some privacy preserving outlier detection methods have been
developed to solve such kinds of problems [4], [5].

While there are a number of different definitions for outliers
as well as techniques to find them, the existing privacy pre-
serving methods were only proposed for Euclidean distance-
based outliers detection. In addition, there are other techniques
in statistics for detecting outliers [6], but still no work on this
problem in a privacy preserving fashion. Basically, the statisti-
cal method requires computing the Mahalonobis distance. The
secure Mahalanobis distance computation of two-party model
has been proposed in [7]. However, the purpose of this work
is to address the problem of privacy-preserving multivariate

statistical analysis. In addition, it has only solved for the
vertically distributed data on two parties. Thus, concerning
to this work, our contributions in this paper are the following:

• A development of a solution for privacy preserving outlier
detection in both horizontally distributed data model and
vertically distributed data model on two parties.

• An extension of the proposed solution to privacy outlier
detection in the horizontally distributed data model on K
parties (K > 2).

In relation to our work, there are mainly two kinds of PPDM
methods [8]: the randomization methods and the cryptographic
methods. Firstly, the randomization methods randomize the
original data or add noise into the original data, so the miner
cannot see the original data. In the mining process, the miner
has to reconstruct approximate distribution of the original data
set from random values [9], [10], [11]. The randomization
method has also been applied to various data mining work such
as association rules [9], classification [12], privacy preserving
collaborative filtering [13], etc. An important problem in
randomization methods is the tradeoff between accuracy and
privacy [14]. Secondly, the cryptographic methods fall under
the theoretical framework of Secure Multiparty Computation
[15]. These techniques allow two or many parties to cooperate
for computation works on their joint data sets without dis-
closing each party’s private information. Many cryptography
techniques have been proposed for various applications [16],
[17], [18]. In our work, we use some theory models defined
in [15], [7].

II. TECHNICAL PRELIMINARIES

A. Problem statement

Multivariate outlier detection: Outlier detection methods
can be divided into two groups of univariate methods and mul-
tivariate methods [19], [6], [1]. Multivariate outlier detection
methods can be further divided into statistical methods that
mainly based on estimated distribution parameters and other
data mining related methods. Statistical methods for multivari-
ate outlier detection often indicate observations that are located
relatively far from the center of the data distribution. Several
distance measures can be implemented for such a task. The
Mahalanobis distance is a well-known criterion which depends
on estimated parameters of the multivariate distribution.
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Consider a data set X that has N observations and n
attributes X1, X2, ..., Xn, where each Xi (i = 1, 2, ..., n)
takes values as real numbers. Denote the sample mean vector
of X by X , the sample covariance matrix of X by C(X),
and the ith row of X by X(i). We also define X̂ as the
following matrix X̂(i) = X(i)−X and C(X) = 1

N−1X̂
T X̂ .

The Mahalanobis distance di of the row ith is defined as

d2i = (X(i)−X)TC−1(X)(X(i)−X)

for i = 1, ..., N . Usually, X is the multivariate arithmetic
mean vector. A large distance indicates that observation is an
outlier for predictor. Therefore, in order to detect outliers, the
main task is to effectively compute C−1(X) and X .
Privacy preserving problem for outlier detection: Assuming
that X is horizontally or vertically distributed on K par-
ties. The target of this work is to find solutions to conduct
multivariate outlier detection on the joint data set of all
parties. So each party can know which object is an outlier
without disclosing information about the objects and the local
statistical parameters of each party.

B. Linear transformation

Let M be a n × n invertible matrix, each mij entry of M
takes a random value as a real number, and Y = XM is a
random N × n matrix obtained from a linear transformation
of X somewhere they said that matrix M .

Lemma 1. Let G(X) be the gram matrix of X , that is,
G(X) = XTX . Then, the gram matrix of Y will be given
by G(Y ) = MTG(X)M and the inverse matrix of G(X) will
be given by G−1(X) = MG−1(Y )MT

Proof: We consider each entry of G(Y):

Gij(Y ) = Y T
i Yj =

n∑
s=1

msiXs

n∑
t=1

mtjXt

=

n∑
s=1

n∑
t=1

msimtjXsXt

=
n∑

s=1

n∑
t=1

msimtjGst(X)

Thus, G(Y ) = MTG(X)M , where Xi and Yi are the
column vectors of X and Y , respectively.

In addition, for any two invertible square matrices P and
Q, we have (PQ)−1 = Q−1P−1. So, using this equation,

G−1(Y ) = (MTG(X)M)−1

= ((MTG(X))M)−1

= M−1(MTG(X))−1

= M−1G(X)−1(MT )−1

and then G−1(X) = MG−1(Y )MT

C. Privacy model

In some early studies in secure multi-party computation,
any computation of a party participating in protocol can only
be computed based on the party’s input and output. So, each
party only has the access right to its input and output, and
no additional information is learned. This security property
is very useful because it does not disclose extra information;
however, it is difficult to achieve efficiently.

In order to achieve the cost of communication more effi-
ciency, some works have extended SMC to more complicated
computation circumstances. In [7], the authors proposed a new
security model for secure two-party computation.

Definition 1. (Expansion security model) Assume all input are
in the real domain R. Denote Ii be the private input of each
Pi and Oi the output of Pi (i = 1, 2). Let C presents the
computation between two parties, i.e. (O1, O2) = C(I1, I2).
A protocol C is secure against dishonest P1 if there exists an
infinite number of (I ′2, O

′
2) pairs in (R,R) such as (O1, O

′
2) =

C(I1, I
′
2). Similarly, the protocol C is secure against dishonest

P2 if there exists an infinite number of (I ′1, O
′
1) pairs in (R,R)

such that (O′
1, O2) = C(I ′1, I2).

This model is weaker in secure than the SMC security
model. Currently, it is still considered as a heuristic model and
theoretically, analysis of this model is still being investigated.
However, using this model can lead to solutions that are much
more efficient than the solutions based on the SMC security
model. Theoretically, a protocol that satisfies the K-SMC
model might still disclose significant information. However,
it doesn’t happen in the situations applied in this paper.

D. Private matrix product sharing

In this paper, we also use the private matrix product sharing
protocol proposed in [7] as a building block to incorporating
privacy preservation in the next protocols.

Let A = (aij)m×q and B = (bij)q×n be two private
matrices of the parties Alice and Bob, respectively. The goal
of this protocol is to privately compute the product AB in
which Alice and Bob obtain the random matrices Sa and Sb

respectively, where Sa + Sb = AB.

E. Secret mean sharing

Assume that two parties Alice and Bob want to share a value
z, in such a way that Alice holds (x, n), Bob holds (y,m),
and z is equal to (x + y)/(m+n). This is called secret mean
sharing. The result of sharing allows Alice and Bob to obtain
the random values rA and rB , respectively where rA+rA = z.
The protocol for this problem was described in [20].

III. PROTOCOLS FOR THE HORIZONTALLY DISTRIBUTED
DATA

The data set X is horizontally distributed on K parties,
each party Pk (k = 1, 2, ...,K) has a subset Xk with Nk

observations and all of n attributes. In other words, each Pk

(k = 1, 2, ...,K) can only observe Nk observations of the set
of N observations.
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Let X(j) presents the jth row of the matrix Xk and X̂k is
the matrix obtained by X̂k = X(j) −X . Let G and G(i) be
gram matrices of X̂ and X̂i, respectively. That is, G = X̂T X̂

and Gk = (X̂k)T X̂k. Then

G =
K∑

k=1

Gk =
K∑

k=1

(X̂k)T X̂k

From this property, we can present C(X) as follows:

C(X) =
1

N − 1

K∑
k=1

G(k) =

K∑
i=1

C(k)

Each element Cij of C(X) is computed by

Cij =
gij

N − 1
=

∑K
k=1 g

(k)
ij∑K

k=1 Nk − 1

where g
(k)
ij is an element of matrix G(k) (1 ≤ i, j ≤ n) that

owned by the party k.
In the case with only two parties, Alice and Bob. We have

Cij =
gij

N − 1
=

g
(1)
ij + g

(2)
ij

N1 +N2 − 1

where g
(1)
ij and g

(2)
ij are elements of matrices G(1) (owned by

Alice) and G(2) (owned by Alice), respectively.
In the next sections, we present two protocols for privacy

preserving outlier detection in horizontally distributed data.
Two important computation works need to be implemented
that compute X and C−1(X). Here X can be directly obtained
by the multi-party division protocol without disclosing raw
data of each party. Consequently, basically, the main work is
to compute C−1(X).

A. Two-party protocol

In this section, we introduce a protocol for the two-party
model. Our protocol consists of four computation works.
Firstly, two parties involve in the secure mean sharing protocol
to compute X . Secondly, the parties privately shares the
matrix C(X) using the private matrix product sharing (PMPS)
protocol [7]. For each element Cij of C(X), parties implement
secure mean sharing protocol. So, Alice obtains C(1)

ij and Bob
obtains C

(2)
ij , where C

(1)
ij + C

(2)
ij = Cij . At the end of this

computation work, Alice obtains a random matrix C(1) and
Bob obtains C(2), where C(1) + C(2) = C(X). Thirdly, two
parties involve in three steps to compute the inverse covariance
matrix by using the linear transformation method together with
the PMPS protocol. The fourth computation is to locally obtain
the Mahalonobise distance of every object for each party. The
more detail of this protocol is given in Figure 1.

Analysis of Protocol: Based on Lemma 1, it is easy to
prove that the protocol is correct. Thus, here we only consider
its privacy.

In our protocol, two parities are assumed to be semi-honest
who strictly follow the protocol but collect all intermediate
results during the execution of protocols to learn the private

Input:Alice and Bob have the data set X(1) and X(2),
respectively

Output:The Mahalanobise distance of each object.

1) The parties use the secure mean sharing protocol to
compute X .

2) The parties share the matrix C(X) by using the
secure mean sharing protocol. Alice obtains C(1) and
Bob obtains C(2).

3) Alice generates a random matrix M. Alice and Bob
use PMPS to share C(2)M , Alice obtains M (1) and
Bob obtains M (2).

4) Alice sends C(1)M +M (1) to Bob
5) Bob computes C(Y ) = C(1)M +M (1)+M (2), then

computes C−1(Y ) and sends it to Alice.
6) Alice computes C−1(X) = MC−1(Y )MT

7) Each party uses C−1(X) and X to locally compute
Mahalonobise distance for its every object.

Fig. 1. Protocol for two-party horizontally distributed data.

data of the other party. As we observe, this protocol applies
two main secure building blocks: the private matrix product
sharing protocol and secure mean sharing protocol. First block
depends on the expansion privacy model that is provably
privacy [7]. The security of second block was proved based
on Semi-honest model. Based on random share technique,
we actually split all the intermediate results into two random
shares except the inverse matrix covariance C−1(X), the mean
vector X and the product matrix C(Y ) = C(X)M (revealed
to Bob). For random shares, the private variables of one party
are protected by the equivalent numbers of random portions
known by itself only. Therefore we can obtain data privacy of
honest parties. In addition, the revealing X and C−1(X) does
not pose any privacy information. For C(Y ) = C(X)M , if
M is a random and non-singular matrix, C(X) will be hidden
in it. Theoretically, since each element o of C(X) and M are
in the real domain, therefore it is possible existing an infinite
number of (C(X),M) pairs that satisfy C(Y ) = C(X)M . So
Bob can not derive raw data of C(X), this property meets the
requirement of security model defined in the previous section.
However, there are several attack problems that is similar to
the problems analyzed in the random rotation perturbation
approach [21].

The Independent Component Analysis (ICA) could be con-
sidered as the most commonly used method to cause the
privacy breaches to the our transformation approach. ICA is
a fundamental problem in signal processing which is used
for blind source separation of mixed signals. Let matrix X
composes by the source signals, where each row vector is a
signal. Suppose we can observe the mixed signals Y, which is
generated by linear transformation C(Y ) = C(X)M . Using
the ICA model can estimate the row vectors of the original
signals C(X), from the mixed signals C(Y ). To address this
problem, we carefully select the transformation matrix such
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that the chosen perturbation is more resilient to the ICA-based
attacks. Methods for selecting the transformation matrix is
being under investigation.

Some other attacks to the data perturbation techniques such
as approximately reconstructing to estimating the original
data, estimating the properties of the values based on the
distributions of the original columns are known, etc. The
metric is used to measure the robustness of the perturbation
technique, which is the width of the estimation range 2cδ
where c is a constant depending on the distribution of △D and
the confidence level, △D = C(Yi)−C(Xi) presents a random
vector that is the difference between a original data column
and a perturbation data column, δ is the standard deviation of
△D.

Complexity estimation: The main complexity of this pro-
tocol is derived the computational complexity of two pro-
tocols: the private matrix product sharing and the secure
mean sharing. As in Steps 1 to 2, the secure mean sharing
product protocol is invoked once to compute the vector X and
C(X). There are n elements in X and n2 elements in C(X).
Therefore, the secure mean sharing protocol is invoked n+n2

times in Steps 1 to 2 for computing X and C, which run
3(n + n2) times of the OPE for the polynomial of degree
1. In Step 3, the private matrix product sharing protocol
is invoked once for splitting the C(2)M . It requires to use
O(n3) multiplications and additions. Therefore, the overall
computational complexity are O(n2) as the computational
complexity of the OPE for the polynomial with degree of 1,
and O(n3) multiplications and O(n3) additions.

The communication between two parties mainly comes
from depends on secure mean sharing and private matrix
sharing. Based on the analysis above, the communication
complexity is O(Tn2 + Fn3) bits, where T is the size for
the security parameters of the obvious polynomial evaluation
for the polynomial protocol (about 1024), and F is the size
of the real numbers (about 32).

B. Multi-party protocol

This section, we extend the two-party protocol for the K-
party case. In this protocol, one party plays the role as a
master (e.g., Party 1) for initializing the protocol. Our protocol
consists of the following computations. Firstly, the parties
involve in the secure sum protocol to compute N =

∑K
i=1 Ni,

next each party locally the matrix C(k), where each element
Cij of C(k) is computed by C

(k)
ij = g

(k)
ij /(N − 1). Secondly,

the parties compute the inverse covariance matrix by using the
linear transformation method, secure sum computation, and the
PMPS protocol. The fourth computation is to locally obtain
the Mahalonobise distance of every object for each party. The
detail protocol given is in Figure 2

Analysis of protocol: Our solution preserves privacy. In-
deed, privacy at the step 1 is derived from the secure sum
protocol, and the privacy at the steps 3, 4, and 5 is derived from
the two-party protocol. In addition, the local computations at
steps 2, 6 and 7 are directly computed from the local data.
However, we need at least three participating parties, each

Input:K parties, each party i has the data set X(i).
Output:The Mahalanobise distance of each object.

1) The parties use the secure sum protocol to compute
N =

∑K
i=1 Ni

2) Each party locally the matrix Ck.
3) Party 1 generates a random matrix M , then each party

i (i = 2, ...,K) and party 1 uses the private matrix
product sharing protocol to share C(i)M , party 1
obtains M

(1)
i and party i obtains M

(2)
i .

4) Party 1 computes C(1)M +
∑K

i=1 M
(1)
i , then the

parties follows a communication round to compute
C(Y ) =

∑K
i=1 C

(i)M . At the end, Party K obtains
C(Y ).

5) Party K computes C−1(Y ) and sends it to Party 1.
6) Party 1 computes C−1(X) = MC−1(Y )MT and

broadcasts this matrix to all other parties.
7) Each party uses C−1(X) and X to locally compute

the Mahalonobise distance for its every object.

Fig. 2. Protocol for multi-party horizontally distributed data.

party gets result of final global computation that is sum of
results of local computations. Because of only two parties
participating in the computation, a party can be get the local
matrix of other party by subtracting its local matrix.

Complexity estimation: Basically, the protocol complexity
is bounded by the private matrix product sharing, but it is
more expensive than K times in comparison with the two-
party protocol. Thus, its computational complexity is O(Kn3)
multiplications and O(Kn3) additions and the communication
complexity O(FKn3) bits. Note that the secure mean sharing
protocol used in the previous protocol are replaced by the
secure sum computation. The complexity of secure sum com-
putation is quite small in comparison with the private matrix
product sharing. Thus we avoid it in this estimation.

IV. PROTOCOL FOR TWO-PARTY VERTICALLY
DISTRIBUTED DATA

We introduce a solution for two-party vertically distributed
data model. Assume that the data set X is vertically distributed
on two parties Alice and Bob, where Alice has a subset X1

and Bob has a subset X2. In order to detect outliers, the first
work is to compute C−1(X) and X . Secondly, we use these
parameters to computing Mahalonobise distance for outlier
detection. X can be directly obtained by local computation,
so it does not disclose raw data while computing X .

For first work, we present the way to compute C−1(X)
without disclosing the raw data as follows. In order to compute
C−1(X), we need to compute X̂T X̂ . Since

X̂T X̂ = (X̂1 : X̂2)T (X̂1 : X̂2)

=

(
(X̂1)T X̂1 (X̂1)T X̂2

(X̂2)T X̂1 (X̂2)T X̂2

)
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Note that (X̂2)T X̂2 and (X̂1)T X̂1 can be locally computed
without disclosing raw data. In addition, using private matrix
sharing protocol, Alice can obtains A1 and A2, Bob can
obtains B1 and B2, where A1 + B1 = (X̂1)T X̂2 and
A2 + B2 = (X̂2)T X̂1. Therefore, Alice and Bob can obtain
C(1) and C(2), respectively, where C(1) +C(2) = X̂T X̂ , and
C(1) and C(2) can be presented as follows

C(1) =

(
(X̂1)T X̂1 A1

A2 0

)

C(2) =

(
0 B1

B2 (X̂2)T X̂2

)
next we uses the linear transformation method to obtain the
inverse of the covariance matrix as steps 3, 4 and 5 in Figure 1.

For second work, two parties cooperatively compute the
Mahalonobise distance for each object i: di = (X(i) −
X)TC−1(X)(X(i) − X). In vertically partitioned data, we
assume the first n1 dimensions of data vector X(i) − X =
[x1, x2, ..., xn] are held by Alice: xa = [x1, x2, ..., xn1 ]
and the remaining n2 dimensions are held Bob: xb =
[xn1+1, xn1+2, ..., xn1+n2 ]. Assume each column vector j
of the matrix C−1 is divided into two portions: c1j =

[c1j , c
2
j , ..., c

n1
j ]T and c2j = [cn1+1

j , cn1+2
j , ..., cn1+n2

j ]T . Let
Va = [an1+1, ... + an1+n2 ] and Vb = [b1, ... + bn1 ] where
aj = xac

1
j and bj = xbc

2
j . The distance di can be computed

by

di =
n∑

j=1

(xac
1
j + xbc

2
j )xj

=

ra︷ ︸︸ ︷
n1∑
j=1

ajxj +

n1+n2∑
j=n1+1

ajxj +

n1∑
j=1

bjxj+

rb︷ ︸︸ ︷
n1+n2∑
j=n1+1

bjxj

Thus, di = ra + Vax
T
b + Vbx

T
a + rb. To compute di, parties

locally compute ra and rb, and then they compute Vax
T
b

and Vbx
T
a by using the product scalar product protocol. We

describe steps for computation in Figure 3
Analysis of protocol: Based on Lemma 1, it is easy to

prove that this protocol allows Alice and Bob to obtain the
Mahalonobise distance for their every object.

In order to analyze privacy of this protocol, we need to
find out how much Alice and Bob know about each others’
information at each step. At step 1 Alice and Bob using the
PMPS protocol that it actually splits all the intermediate results
into two random portions except the matrix C−1(X). The
private variables of one party are protected by the equivalent
numbers of random portions known by itself only. Therefore
data privacy of honest parties are preserved. In the step 2,
Alice only sends C(1)M +M (1) to Bob, this matrix is only
the random matrix, so it does not disclose any significant
information of Alice to Bob. The disclosed information at steps
3, 4 and 5 is similar to which of the protocol for two-party
horizontally distributed data, the privacy property of these

Input:Alice and Bob have the data set X(1) and X(2),
respectively

Output:The Mahalanobise distance of each object.

1) Alice and Bob jointly share the C(X) using PPMS
protocol. Alice obtains the matrix C(1) and Bob
obtains C(2)

2) Alice generates a random matrix M . Alice and Bob
use PMPS to share C(2)M , Alice obtains M (1) and
Bob obtains M (2).

3) Alice sends C(1)M +M (1) to Bob
4) Bob computes C(Y ) = C(1)M +M (1)+M (2), then

computes C−1(Y ) and sends it to Alice.
5) Alice computes C−1(X) = MC−1(Y )MT

6) Two parties uses the secure scalar product protocol to
compute Mahalonobise distance for its every object.

Fig. 3. Protocol for two-party vertically distributed data.

steps obtains from the expansion security model. The security
of the final step is based on the scalar product protocol.

The complexity estimation: The main complexity of this
protocol is derived the computational complexity of two pro-
tocols: PMPS and SSP. Thus, it requires to use O(Nn) multi-
plications, O(Nn) additions, and O(N) as the computational
complexity of The SSP protocol with the vector length n.

Also, the communication between two parties mainly comes
from depends on SSP computation and private matrix sharing.
Based on the analysis above, the the communication com-
plexity is O((S + F )Nn) bits, where S is the size for the
security parameters of the SSP protocol (about 1024), and F
is much smaller than S (about 32), thus O(SNn) bits are the
communication complexity of the protocol.

V. EXPERIMENTS

In this section, we provide an experiment to evaluate the
performance of the proposed protocols. Protocols run in the
C# language of Microsoft Visual Studio 2005 environment.
All experiments are performed on the Window XP operating
system with Intel core 2 duo E7500 2.93GHz and 2GB mem-
ory. As communication complexity depends on the network
performance and physical distance of two parties, we simply
considered parties as threads that exchange data directly by
shared memory method.

The dataset used is the Breast Cancer Database from
the UCI Machine Learning Depository. There are 569 data
samples and 32 numeric attributes. We only use 500 data
samples and 20 attributes for our experiments. We evaluate
the performance of protocols for two-party distributed data.
We use the OPE protocol in [22] and the SSP protocol in [23]
for these experiments

Table I illustrates our measurements of the computation
time for horizontally distributed data, where data instances
of data set are uniformly distributed between two parties: it
is linear in N , and dependencies on n is very negligible.
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N
n 100 200 300 400 500
3 0.55 0.57 0.58 0.58 0.61
5 1.23 1.26 1.37 1.39 1.41
7 2.39 2.43 2.45 2.53 2.57
10 5.15 5.15 5.42 5.58 5.66
20 10.24 10.27 10.35 10.35 10.47

TABLE I
THE PARTIES’S COMPUTATIONAL TIME FOR THE HORIZONTALLY

DISTRIBUTED DATA

N
n 100 200 300 400 500
3 1.49 2.41 4.14 5.08 5.93
5 2.11 5.26 6.50 7.33 8.61
7 3.66 6.01 6.49 7.84 10.13
10 4.69 6.70 10.93 14.96 19.40
10 9.31 12.76 20.15 25.47 36.40

TABLE II
THE PARTIES’S COMPUTATIONAL TIME FOR THE VERTICALLY

DISTRIBUTED DATA

For a typical scenario where n = 20 and N = 500, the
computation time of the protocol is about 10.47 seconds. Table
II illustrates our measurements of the computation time for
vertically distributed data, where attributes of data set are
uniformly distributed between two parties: it is linear in both
N and n. For a typical scenario where N = 500 and n = 20,
the computation time of the miner is about 36.40 seconds. We
can see that our method is efficient for horizontally distributed
data.

VI. CONCLUSIONS

We have proposed a solution for privacy-preserving mul-
tivariate outlier detection in both vertically and horizontally
distributed data model on two parties. We have extended
the solution for K-party horizontally distributed model. Our
solution is based on the following techniques: linear transfor-
mation, private matrix product sharing, secure mean computa-
tion and secure sum. We proved protocols’s privacy based on
both Semi-honest and expansion security models. We provided
the experiments to show that the complexity of our protocol
is linear in the number of data attributes and the size of
database. In the model of horizontally distributed data, since
the complexity of our protocol mainly depends on the number
of attributes, it is very efficient. Our solution allows K parties
to cooperate for outlier detection on their joint data sets
without disclosing each party’s private data to the other parties.
For the future work, we will use these solutions to do some
selected real-life applications.
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